Equiaffine immersions of codimension two with flat connection and one-dimensional Weingarten mapping

نویسندگان

چکیده

In the paper we study equiaffine immersions $f\colon (M^n,\nabla) \rightarrow {\mathbb{R}}^{n+2}$ with flat connection $\nabla$ and one-dimensional Weingarten mapping. For such there are two types of transversal distribution frame.We give a parametrization submanifold given properties for both frame. The main result is contained in Theorems 1, 2 Corollary 1: Let ({M}^n,\nabla)\rightarrow({\mathbb{R}}^{n+2},D)$ be an affine immersion pointwise codimension 2, structure, $\nabla$, mapping then exists three its parametrization:$(i)$ $\vec{r}=g(u^1,\ldots,u^n) \vec{a}_1+\int\vec{\varphi}(u^1)du^1+\sum\limits_{i=2}^n u^i\vec{a}_i;$$(ii)$ $\vec{r}=(g(u^2,\ldots,u^n)+u^1)\vec{a}+\int v(u^1) \vec{\eta}(u^1)du^1+\sum\limits_{i=2}^n u^i\int\lambda_i(u^1)\vec{\eta}(u^1)du^1;$$(iii)$ $\vec{r}=(g(u^2,\ldots,u^n)+u^1)\vec{\rho}(u^1)+\int (v(u^1) - u^1)\dfrac{d \vec{\rho}(u^1)}{d u^1}du^1+\sum\limits_{i=2}^n u^i\int\lambda_i(u^1)\dfrac{d u^1}du^1.$

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Formulas for Smale Invariants of Codimension Two Immersions

We give three formulas expressing the Smale invariant of an immersion f of a (4k− 1)-sphere into (4k + 1)-space. The terms of the formulas are geometric characteristics of any generic smooth map g of any oriented 4k-dimensional manifold, where g restricted to the boundary is an immersion regularly homotopic to f in (6k − 1)-space. The formulas imply that if f and g are two non-regularly homotop...

متن کامل

Two Dimensional Stringy Black Holes with One Asymptotically Flat Domain

The exact black hole solution of 2D closed string theory has, as any other maximally extended Schwarzschild-like geometry, two asymptotically flat spacetime domains. One can get rid of the second domain by gauging the discrete symmetry on the SL(2,R)/U(1) coset that interchanges the two asymptotic domains and preserves the Kruskal time orientation everywhere in the Kruskal plane. Here it is sho...

متن کامل

Singular Levi-flat Hypersurfaces and Codimension One Foliations

We study Levi-flat real analytic hypersurfaces with singularities. We prove that the Levi foliation on the regular part of the hypersurface can be holomorphically extended, in a suitable sense, to neighbourhoods of singular

متن کامل

Mapping two-dimensional polar active fluids to two-dimensional soap and one-dimensional sandblasting

Active fluids and growing interfaces are two well-studied but very different non-equilibrium systems. Each exhibits non-equilibrium behaviour distinct from that of their equilibrium counterparts. Here we demonstrate a surprising connection between these two: the ordered phase of incompressible polar active fluids in two spatial dimensions without momentum conservation, and growing one-dimension...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Matemati?nì studìï

سال: 2023

ISSN: ['2411-0620', '1027-4634']

DOI: https://doi.org/10.30970/ms.60.1.99-112